Skala


Skala: förstoring och förminskning

Längdskala, areaskala, volymskala

På formelbladet:

Exempel.

Om längdskalan (vanliga skalan) är 1 : 10, så kan vi räkna ut areaskalan och volymskalan så här:

Areaskalan blir 1 : 100 (uträkning: 1·1=1 och 10·10=100). Arean i en figur förminskas alltså till en hundradel om figurens längder minskas till en tiondel. 

Volymskalan blir 1 : 1000 (Uträkning: 1·1·1=1 och 10·10·10=1000). Volymen förminskas alltså till en tusendel om alla längder minskas till en tiondel. 

Svårare exempel.

Om längdskalan (vanliga skalan) är 2 : 3, så kan vi räkna ut areaskalan och volymskalan så här:

Areaskalan blir 4 : 9 (uträkning: 2·2=4 och 3·3=9). Arean i en figur förminskas alltså till en fyra niondelar om figurens längder minskas till två tredjedelar. 

Volymskalan blir 8 : 27 (Uträkning: 2·2·2=8 och 3·3·3=27). Volymen förminskas alltså till åtta tjugosjundedelar om alla längder minskas till två tredjedelar. 

Hur fungerar skala om det gäller area eller volym?

Lämna en kommentar

E-postadressen publiceras inte.